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We present analytical and numerical studies of the phase-coherent dynamics of intrinsically localized exci-
tations �breathers� in a system of two weakly coupled nonlinear oscillator chains. We show that there are two
qualitatively different dynamical regimes of the coupled breathers, either immovable or slowly moving: the
periodic transverse translation �wandering� of the low-amplitude breather between the chains and the one-
chain-localization of the high-amplitude breather. These two modes of coupled nonlinear excitations, which
involve a large number of anharmonic oscillators, can be mapped onto two solutions of a single pendulum
equation, detached by a separatrix mode. We also show that these two regimes of coupled phase-coherent
breathers are similar and are described by a similar pair of equations to the two regimes in the nonlinear
tunneling dynamics of two weakly linked interacting �nonideal� Bose-Einstein condensates. On the basis of this
profound analogy, we predict a tunneling mode of two weakly coupled Bose-Einstein condensates in which
their relative phase oscillates around �

2 mod �. We also show that the magnitude of the static displacements of
the coupled chains with nonlinear localized excitation, induced by the cubic term in the intrachain anharmonic
potential, scales approximately as the total vibrational energy of the excitation, either a one- or two-chain one,
and does not depend on the interchain coupling. This feature is also valid for a narrow stripe of several
parallel-coupled nonlinear chains. We also study two-chain breathers which can be considered as bound states
of discrete breathers, with different symmetry and center locations in the coupled chains, and bifurcation of the
antiphase two-chain breather into the one-chain one. Bound states of two breathers with different commensu-
rate frequencies are found in the two-chain system. Merging of two breathers with different frequencies into
one breather in two coupled chains is observed. Wandering of the low-amplitude breather in a system of
several, up to five, coupled nonlinear chains is studied, and the dependence of the wandering period on the
number of chains is analytically estimated and compared with numerical results. The delocalizing transition of
a one-dimensional �1D� breather in the 2D system of a large number of parallel-coupled nonlinear oscillator
chains is described, in which the breather, initially excited in a given chain, abruptly spreads its vibrational
energy in the whole 2D system upon decreasing the breather frequency or amplitude below the threshold one.
The threshold breather frequency is above the cutoff phonon frequency in the 2D system, and the threshold
breather amplitude scales as the square root of the interchain coupling constant. The delocalizing transition of
the discrete vibrational breather in 2D and 3D systems of parallel-coupled nonlinear oscillator chains has an
analogy with the delocalizing transition for Bose-Einstein condensates in 2D and 3D optical lattices.
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I. INTRODUCTION

Nonlinear excitations �solitons, kink-solitons, intrinsically
localized modes, and breathers� can be created most easily in
low-dimensional �one-dimensional �1D� and quasi-1D� sys-
tems �1–10�. Recent experiments have demonstrated the ex-
istence of intrinsically localized modes and breathers in vari-
ous systems such as 2D and 3D arrays of nonlinear optical
waveguides �11,12�, low-dimensional crystals �13�, antiferro-
magnetic materials �14�, Josephson junction arrays �15,16�,
photonic structures and micromechanical systems �17�, pro-
tein �-helices �18�, and �-uranium �19�. Slowly moving
breathers and supersonic kink-solitons were also described in
1D nonlinear chains �6,7,20–23�, DNA macromolecules �24�,
and quasi-1D polymer crystals �25,26�.

One-dimensional arrays of magnetic or optical microtraps
for Bose-Einstein condensates �BECs� of ultracold quantum
gases with tunneling coupling provide a new field for studies
of the coherent nonlinear dynamics in low-dimensional sys-
tems �27,28�. In the mean-field theory, the tunneling cou-
pling between two interacting BECs is similar to the linear
coupling between two nonlinear optical waveguides �29� or
between two chains of anharmonic oscillators �nonlinear
phononic waveguides� �30�. Here we show that the phase-
coherent dynamics of macroscopic ensembles of classical
particles �weakly localized breathers� in two weakly linked
nonlinear oscillator chains has a profound analogy and is
described by a similar, in every respect, pair of equations to
the tunneling quantum dynamics of two weakly linked inter-
acting �nonideal� BECs in a macroscopic double-well poten-
tial �single-bosonic Josephson junction� �31�. The exchange
of energy and excitations between the coupled classical os-
cillator chains takes on the role which the exchange of atoms
via quantum tunneling plays in the case of coupled BECs.
Therefore such phase-coherent energy and excitation ex-
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change can be considered as a classical counterpart of mac-
roscopic tunneling quantum dynamics.

We show that there are two qualitatively different dynami-
cal regimes of the coupled breathers: the oscillatory ex-
change of the low-amplitude breather between the chains
�wandering breather� and one-chain-localization �nonlinear
self-trapping� of the high-amplitude breather. These two re-
gimes, which are detached by a separatrix mode with a zero
rate of energy and excitation exchange, are analogous to the
two regimes in the nonlinear dynamics of macroscopic inter-
acting condensates in a single-bosonic Josephson junction
�31�. Essentially, the phase-coherent dynamics of the coupled
classical breathers is described by a pair of equations, which
coincides with the pair of coupled mean-field equations de-
scribing coherent atomic tunneling in a single-bosonic tunnel
junction �32,33�. The predicted evolution of the relative
phase of two weakly coupled coherent breathers in both dy-
namical regimes is also analogous to the evolution of the
relative quantum mechanical phase between two weakly
coupled macroscopic condensates, which was directly mea-
sured in a single-bosonic Josephson junction by means of
interference �31�. Moreover, the predicted separatrix in the
excitation exchange between macroscopic ensembles of
phase-coherent particles �weakly localized breathers� in
coupled oscillator chains with “repulsive” nonlinearity,
which is determined by the ratio of the intrachain nonlinear-
ity �intrachain interaction� and the interchain coupling, can
be considered as a classical nonlinear dynamical model of
the reversible interaction-induced superfluid–Mott-insulator
quantum phase transition, observed in BECs with repulsive
interatomic interaction in a lattice with tunneling intersite
coupling �34�. All these results bring to light a striking simi-
larity, in both display and evolution equations, between the
classical phase-coherent excitation exchange and macro-
scopic tunneling quantum dynamics which can motivate new
predictions and experiments in both fields. On the basis of
this profound analogy, we predict a tunneling regime of two
weakly coupled BECs in which their relative phase oscillates
around �

2 mod �, which can be observed by means of inter-
ference. This regime is different from the regime of Joseph-
son plasma oscillations, already realized in experiments �31�,
in which the relative phase of two weakly linked BECs os-
cillates �or fluctuates �35�� around zero.

We also show that the magnitude of the static displace-
ments of the coupled chains with nonlinear localized excita-
tion, caused by the cubic term in the intrachain anharmonic
potential, scales approximately as the total vibration energy
of the excitation, either the one- or two-chain one, and does
not depend on the interchain coupling. This feature is also
valid for a narrow stripe of several parallel-coupled nonlinear
chains. We also study two-chain breathers which can be con-
sidered as bound states of discrete breathers with different
symmetry and center locations in the coupled chains, and
bifurcation of the antiphase two-chain breather into the one-
chain one. Bound states of two breathers with different com-
mensurate frequencies are also found in the two-chain sys-
tem. Merging of two breathers with different frequencies into
one breather in two coupled chains is described. Periodic
transverse translation �wandering� of a low-amplitude
breather in a system of several, up to five, coupled nonlinear

chains is observed, and the dependence of the wandering
period on the number of chains is analytically estimated and
compared with numerical results. The delocalizing transition
of a 1D breather in a 2D system of a large number of
parallel-coupled nonlinear oscillator chains is described, in
which the breather, initially excited in a given 1D chain,
abruptly spreads its vibrational energy in the whole 2D sys-
tem upon decreasing the breather frequency or amplitude be-
low the threshold one. The threshold breather frequency is
above the cutoff phonon frequency in the 2D system, the
threshold breather amplitude scales as the square root of the
interchain coupling constant, and the breather vibrational en-
ergy is localized mainly in one chain at the delocalization
threshold. A similar delocalizing transition for the 1D
breather should occur also in a 3D array of parallel-coupled
nonlinear chains. The delocalizing transition of a discrete
breather in 2D and 3D systems of coupled nonlinear oscilla-
tor chains has an analogy with the delocalizing transition for
polarons in 2D and 3D lattices �36� and for Bose-Einstein
condensates in 2D and 3D optical lattices �37�.

The paper is organized as follows. In the next section,
Sec. II, we describe our model and the analytical predictions,
derived on the basis of this model. In Sec. III we describe our
numerical simulations and comparison with the analytical
predictions, which include simulation of the dynamics of dis-
crete breathers in two weakly coupled chains �Sec. III A�,
simulation of a wandering breather in two weakly coupled
chains �Sec. III B�, and simulation of breathers in a system of
M �2 parallel weakly coupled anharmonic chains �Sec.
III C�. In Sec. IV we give a summary of the main results of
this paper.

II. MODEL AND ANALYTICAL PREDICTIONS

We consider two linearly coupled nonlinear oscillator
chains �with unit lattice period�. We model the chains with
the Fermi-Pasta-Ulam �FPU� Hamiltonian, which is one of
the most simple and universal models of nonlinear lattices
and which can be applied to a diverse range of physical
problems �38�:

H = �
i=1

2

�
n
�1

2
pn

�i�2 +
1

2
l�i��un+1

�i� − un
�i��2 +

1

3
��i��un+1

�i� − un
�i��3

+
1

4
��i��un+1

�i� − un
�i��4 +

1

2
C�un

�i� − un
�3−i��2� . �1�

Here un
�i� is displacement of the nth particle from its equilib-

rium position in the ith chain, pn
�i�= u̇n

�i� is the particle momen-
tum, l�i�, ��i�, and ��i� are the intrachain linear and nonlinear
force constants, and C describes the linear interchain cou-
pling. We assume that the coupling is weak, C� l�i�, and do
not include the nonlinear interchain interaction. The �-FPU
Hamiltonian �1� �with ��i�=0� describes, in particular, purely
transverse particle motion �6�. The torsion dynamics of the
DNA double helix can also be approximated by the �-FPU
Hamiltonian �1� �24�. On the other hand, weakly coupled
nonlinear molecular chains in polymers are characterized by
the asymmetric intrachain anharmonic potential, with non-
zero ��i� �25,26�.
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The Hamiltonian �1� generates the following equations of
motion, i=1,2:

ün
�i� = l�i��un+1

�i� + un−1
�i� − 2un+1

�i� �

+ ��i���un+1
�i� − un

�i��2 − �un−1
�i� − un

�i��2�

+ ��i���un+1
�i� − un

�i��3 + �un−1
�i� − un

�i��3� + C�un
�3−i� − un

�i�� .

�2�

Below we consider two chains with identical anharmonic
force constants when ��1�=��2��� and ��1�=��2���. We
are interested in the high-frequency and therefore short-
wavelength dynamics of the coupled chains when the dis-
placements of the nearest-neighbor particles are mainly an-
tiphase. For this case we can introduce continuous envelope
functions for the particle displacements in the chains, fn

�i�

=un
�i��−1�n and fn

�i�� f�x�i. These envelope functions f�x�i are
supposed to be slowly varying on the interatomic scale in
both chains, �f i /�x�1, which allows us to write the corre-
sponding partial differential equations for these functions;
see, e.g., Refs. �2,6,7,21�. To obtain nonlinear envelope-
function equations for the coupled chains with asymmetric
interparticle potential, one needs to consider separately the
dynamics of the relative, vn

�i�=un+1
�i� −un

�i�, and total, wn
�i�

=un+1
�i� +un

�i�, displacements of the nearest-neighbor particles;
cf. Ref. �2�. Equations for vn

�i� and wn
�i� can be obtained from

Eqs. �2� and look as follows:

v̈n
�i� = l�i��vn+1

�i� + vn−1
�i� − 2vn+1

�i� � + ��vn+1
�i�2 + vn−1

�i�2 − 2vn
�i�2�

+ ��vn+1
�i�3 + vn−1

�i�3 − 2vn
�i�3� + C�vn

�3−i� − vn
�i�� , �3�

ẅn
�i� = l�i��wn+1

�i� + wn−1
�i� − 2wn+1

�i� � + ��vn+1
�i�2 − vn−1

�i�2�

+ ��vn+1
�i�3 − vn−1

�i�3� + C�wn
�3−i� − wn

�i�� . �4�

Introducing the continuous relative and total displacements
vn

�i��v�x�i and wn
�i��w�x�i and making in Eqs. �3� and �4�

expansions of the differences un�1
�i� −un

�i� and wn�1
�i� −wn

�i� up to
second order, we get the following partial differential equa-
tions for v�x , t�i and w�x , t�i:

v̈i = − l�i��
2vi

�x2 − 4l�i�vi − 4
�wi

�x
��vi + �vi

2� − 4�vi
3

+ C�v3−i − vi� , �5�

ẅi = l�i��
2wi

�x2 + 2�
�vi

2

�x
+ 2�

�vi
3

�x
+ C�w3−i − wi� . �6�

The main small parameters, which will allow us to find
asymptotic solutions of these equations, are the amplitudes
of the displacements un

�i� of the coupled oscillations and
hence their envelopes f�x , t�i. As follows from Eqs. �6�, in
the chains with asymmetric interparticle potential �with finite
�� the total displacements wi of the nearest neighbors are
weakly coupled �via anharmonic interaction� with relative
displacements vi and are in general small in comparison with
them, wi�vi �see Eqs. �9�–�11� below�. In such chains, the
asymmetric potential induces both the static �zeroth-
harmonic� and second-harmonic terms in the total displace-
ments of the nearest-neighbor particles, but the latter terms

are smaller than the former ones in the small-amplitude limit;
cf. Ref. �2�.

Now we analyze the static displacements w0i�x� of two
identical weakly coupled chains with l�1�= l�2�=1. In order to
minimize the static elastic energy, the static displacements of
the chains should be equal at both infinities: w01�x�=w02�x�
for x→−� and x→ +�. To find w0i�x�, we take the sum and
difference of Eqs. �6� for the two chains to obtain the follow-
ing equations:

ẅ1 + ẅ2 =
�2�w1 + w2�

�x2 + 2�
��v1

2 + v2
2�

�x
+ 2�

��v1
3 + v2

3�
�x

,

�7�

ẅ1 − ẅ2 =
�2�w1 − w2�

�x2 − 2C�w1 − w2� + 2�
��v1

2 − v2
2�

�x

+ 2�
��v1

3 − v2
3�

�x
. �8�

Omitting the time-derivative terms, we get from Eq. �7�
the following expression for the static center-of-mass dis-
placement of the two chains:

w0
�c.m.��x� =

w01�x� + w02�x�
2

= − �	
−�

x


v1
2 + v2

2�dx�, �9�

where the angular brackets denote the time averaging. The
nonlinear term, proportional to �
v1

3+v2
3� �cf. Eq. �7��, is av-

eraged out in Eq. �9� because of the third power of v�i�. At
both infinities, the displacement w0

�c.m.��x� coincides with
equal static displacements of the coupled chains,
w0

�c.m.�����=w0
�1�����=w0

�2�����. It is assumed in Eq. �9�
that w0

�c.m.��−��=0, v�i��−��=0, and
�w0

�c.m.�

�x �−��=0, i=1,2.
Therefore the static displacements of the both coupled chains
w0�x��i� have in general the form of the kinklike pattern with
equal center-of-mass displacement difference 	w0

�c.m.�

=w0
�c.m.��+��−w0

�c.m.��−��=w0
�c.m.��+��. The kinklike static

displacement pattern of an intrinsically localized mode
�breather� in a single �-�-FPU chain was studied in Refs.
�2,39–41�.

The term in angular brackets on the right-hand side of Eq.
�9� coincides with the total vibration energy of two coupled
chains �in the low-amplitude limit when the energy is gov-
erned mainly by the quadratic terms in Hamiltonian �1��.
Therefore the magnitude of the center-of-mass displacement
of the coupled chains with asymmetric anharmonic potential
scales approximately as the total vibrational energy of the
nonlinear localized excitation, the one- or the two-chain
breather in two coupled chains: w0

�c.m.�=−��−�
+�
v1

2+v2
2�dx�.

Equations �7� and �9� also show that static strain of the
chains, given by the displacement derivative, is determined
by the local density of the total vibrational energy of the
nonlinear localized excitation: �w0

�c.m.��x� /�x=−�
v1
2+v2

2��x�.
These conclusions are confirmed by our numerical simula-
tions; see Figs. 2�c� and 2�d� below.

These conclusions can be easily generalized to the system
of M �2 parallel-coupled nonlinear chains, see also Sec.
III C below. In this case only the last term in Eqs. �5� and �6�,
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describing the interchain coupling, will be modified �cf. Eq.
�62� below�. In a narrow stripe of chains, when the number
of particles, N, in each chain greatly exceeds the number of
chains, N
M, the static center-of-mass displacement in the
multichain system will have the form

w0
�c.m.��x� =

1

M
�
m=1

M

w0m�x� = −
2�

M
	

−�

x �
m=1

M

vm
2�dx�,

�10�

where vm�x� and w0m�x� are, respectively, the relative and
static total nearest-neighbor displacements in the mth chain.
It is assumed in Eq. �10� that w0

�c.m.��−��=0, vm�−��=0, and
�w0

�c.m.�

�x �−��=0. As follows from Eq. �10�, the lattice displace-
ment w0

�c.m.��x� and the corresponding lattice strain
�w0

�c.m.� /�x in the multichain system depend on the number of
the oscillating chains and on their vibrational energies. Im-
portantly, the magnitudes of the static lattice displacements
and of the strain in a system of coupled chains, Eqs. �9� and
�10�, do not depend on the strength of the interchain cou-
pling, which is related to the long-range action of the static
elastic fields.

The magnitudes of the static displacements in the central
region of the kinks in the two chains are different in general
and can be found with the help of Eq. �8� and the above
requirements for the magnitudes of w0�x��i� at the infinities.
Omitting the time-derivative terms, we get from Eq. �8� the
following solution for the difference of static displacements
of the two coupled chains:

	w0�x� � w01�x� − w02�x�

=
1

4
� 2

C	−�

x

sinh��s − x��2C�A�s�ds

+ 	
x

�

sinh��x − s��2C�A�s�ds

− 	
−�

−x

sinh��s + x��2C�A�s�ds

+ 	
−x

�

sinh��s + x��2C�A�s�ds� , �11�

where A�s�=�� �v1
2�s�−v2

2�s�� /�s. Taking into account that
vi

2�x� is a symmetric function with respect to the breather
center x=0 �see Eqs. �19� and �20� below�, Eq. �11� gives us
that 	w0�x�=−	w0�−x� and therefore 	w0�x� is zero both at
x=0 and at both infinities. �As follows from Eq. �11�, the
difference of the static displacements of the coupled chains
	w0�x� depends in general on the coupling constant C, in
contrast to the static center-of-mass displacement w0

�c.m.��x�,
Eq. �9�.� As follows in turn from Eqs. �6�, the second-
harmonic terms in the total displacements w�x�i in the chains
have smallness of the third order in v�x��i� because of the
smallness of the spatial derivative �v�i�2 /�x��iv�i�2�v�i�3;
see Eqs. �19�, �20�, and �23� below. This allows us to neglect
in the following analysis of breather dynamics in coupled
chains both the difference of static displacements of the

chains 	w0�x� and the second-harmonic terms in the total
displacements w�x�i in comparison with the static center-of-
mass displacement w0

�c.m.��x�.
Taking into account that v�x�i=2f�x�i, we get from Eqs.

�5�, �7�, and �9� the following coupled nonlinear partial dif-
ferential equations for the real envelope functions f�x�i, i
=1,2:

f̈ i + �mi
2 f i +

�2f i

�x2 + 16�f i
3 − 16�2
f1

2 + f2
2�f i − Cf3−i = 0,

�12�

where �mi=�4l�i�+C is the characteristic frequency slightly
above the maximal phonon frequency in the ith isolated
chain. These self-consistent equations describe the dynami-
cal relative lattice displacements vi�x�, while the static lattice
displacements w0i�x� can be obtained with the use of Eqs. �9�
and �11�. It is worth mentioning that collective static defor-
mation of the coupled chains, induced by the asymmetric
intrachain anharmonic potential, makes the coupled
envelope-function equations �12� nonlocal in general, via the
term proportional to −�2.

In order to deal with the amplitude and phase of the
coupled nonlinear excitations, it is useful to introduce com-
plex wave fields �x , t�i for each chain �see, e.g., Ref. �21��:

f�x,t�i =
1

2
��x,t�i + �x,t�i

�� . �13�

Then in resonance approximation we get from Eqs. �12� and
�13� the following coupled equations for �x , t�i, i=1,2:

1

2
� �2i

�t2 +
�2i

�x2 + �mi
2 i� + 6��i�2i

− 8�2
�1�2 + �2�2�i −
1

2
C3−i = 0 �14�

�and complex-conjugated equations for i
��. This approxi-

mation, in which we neglect the higher harmonics, is valid
for the dispersive system under consideration due to the
weakness of the nonresonant interaction between the mode
with fundamental frequency and its third harmonic; cf. Ref.
�21�.

Using Eqs. �14� in the assumption that the shift of the
wandering breather frequency, caused by nonlinearity, weak
interchain coupling, and slow breather motion along the
chains, is relatively small, one can readily ascertain the ex-
istence in general of the following three integrals of motion:

Nb =	 ��1�2 + �2�2�dx , �15�

Eb =	 ��
i=1

2 �3��i�4 − 8�2
�1�2 + �2�2��i�2

−
1

2
� �i

�x
�2� −

1

2
C�12

� + 21
���dx , �16�
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Pbx = −
i

2
	 �

i=1

2 �i

�i
�

�x
− i

��i

�x
�dx , �17�

which play the role of the breather total number of excita-
tions, total energy, and total momentum along the chain axis,
respectively; cf. �21�. The existence of these integrals of mo-
tion demonstrates that the exchange of energy and momen-
tum between two nonlinear systems �1� is a coherent phe-
nomenon, which depends in general on the initial excitation
conditions.

It is also useful to define partial numbers of excitations,

Ni =	 �i�2dx, i = 1,2,

when Ṅi+Ji=0, where

Ji = − J3−i =
iC

2�
	 �i3−i

� − i
�3−i�dx �18�

is a total interchain flux of excitations, which conserves the

total number of them, Ṅb=0, where Nb=N1+N2, and � is the
frequency of the wandering breather; see Eqs. �19�, �20�, and
�22� below.

To describe with the help of Eqs. �14� an immovable or
slowly moving breather, wandering between two weakly
coupled nonlinear chains with positive �repulsive� anhar-
monic force constant �, we assume the following form for
the complex fields 1 and 2:

1 = max
exp�i�kx − �t��

cosh��1�x − Vt��
cos � exp�−

i

2
�� , �19�

2 = max
exp�i�kx − �t��

cosh��2�x − Vt��
sin � exp� i

2
�� , �20�

where �, V�1, and k�1 are, respectively, the frequency,
slow velocity, and small wave number related to the moving
breather, �1,2�1 are real parameters describing the inverse
localization lengths of the breathers; and �=��t−kx /��
stands for the relative phase of the coupled chains, while the
parameter �=��t−kx /�� describes the “relative population”
of the two chains, z= �n1−n2� / �n1+n2�=cos 2�, where ni
= �i�2 is the local density of excitations in the ith chain and

�1�2+ �2�2�=max

2 in Eq. �14�. The parameters � and �
determine also the interchain flux of excitations �cf. Eq.
�18��:

J1 = − J2 =
Cmax

2

2�
	 sin 2� sin �

cosh��1�x − Vt��cosh��2�x − Vt��
dx .

�21�

Using Eqs. �14�, �19�, and �20�, after some algebra we
obtain dispersion equations for the introduced parameters,

�2 =
1

2
��m1

2 + �m2
2 � + �3� − 8�2�max

2 − k2 − C
cos �

sin �2��
,

�22�

�1
2 = �6� cos2 � − 8�2�max

2 , �2
2 = �6� sin2 � − 8�2�max

2 ,

�23�

V =
��

�k
, �24�

and evolution equations for � and �:

�̇ =
1

2�
��m1

2 − �m2
2 � +

3�max
2

�
cos�2�� +

C

�
cos � cot�2�� ,

�25�

�̇ =
C

2�
sin � . �26�

In the derivation of Eqs. �25� and �26�, it was assumed ex-
plicitly that the ratio

cosh��1�x−Vt��
cosh��2�x−Vt�� is equal to 1. The latter is

valid for small-amplitude breathers with long localization
lengths, �1,2�1. In this case the above assumption, which is
exact for the central region of the breathers, x−Vt�0, will
be �approximately� valid for a large number of particles,
which form weakly localized wandering breathers in weakly
coupled nonlinear chains. It is also assumed in the approxi-
mation considered that the shifts of the breather frequency �,
Eq. �22�, caused by the weak interchain coupling C, nonlin-
earity �3�−8�2�max

2 , and slow breather motion along the
chains k2, as well as the characteristic frequency difference
��m1−�m2� /�, are all relatively small. It is worth mentioning
that the parameter −8�2max

2 determines the shift of the
breather frequency � and inverse localization lengths �1,2
�see Eqs. �22� and �23��, but does not enter the evolution
equations �25� and �26� for � and �. Equations similar to
Eqs. �25� and �26� were probably derived for the first time in
Ref. �42� for the description of energy exchange between two
weakly coupled classical anharmonic oscillators �with �m1
=�m2 and �=0�. Later, similar equations were used for the
description of the power exchange between two weakly
coupled nonlinear optical waveguides �43� and of the dy-
namics of coupled nonlinear oscillators �44�.

Equations �25� and �26� can be written in an equivalent
form for the relative phase � and population imbalance z,
when z=cos 2� and �1−z2=sin 2�:

�̇ = �m1 − �m2 +
3�max

2

�
z +

C

�

z
�1 − z2

cos � , �27�

ż = −
C

�
�1 − z2 sin � . �28�

Here the variables � and z are canonically conjugate,

�̇ =
�Hef f

�z
, ż = −

�Hef f

��
, �29�

with the following effective Hamiltonian �which has the di-
mension of frequency�:
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Hef f =
3�max

2

2�
z2 −

C

�
�1 − z2 cos � + z��m1 − �m2� .

�30�

The very same equations �27� and �28� for � and z, which
are equivalent to Eqs. �25� and �26� for � and �, were ob-
tained in Refs. �32,33� in the mean-field theory of tunneling
dynamics of two weakly coupled interacting �nonideal�
Bose-Einstein condensates, which were later used in the
analysis of the experimental realization of a single-bosonic
Josephson junction �31�. Therefore the generic evolution
equations �27� and �28� �being written in corresponding
units� for the dynamics of two coupled phase-coherent
breathers or tunneling dynamics of two coupled interacting
BECs do not explicitly depend on the “source” equations:
Eqs. �14� for coupled oscillator chains or mean-field Gross-
Pitaevskii equations for coupled interacting BECs �32,33�. In
our case, Eqs. �27� and �28� describe the exchange of lattice
excitations between the chains rather than atomic tunneling.
One can therefore consider such an excitation exchange as a
classical counterpart of macroscopic tunneling quantum dy-
namics. Some other equivalent forms of the effective Hamil-
tonian �30� were also discussed in Refs. �45,46�.

It is noteworthy that equations, similar to Eqs. �25� and
�26�, describe the dynamics of two weakly coupled nonlinear
oscillators �with different harmonic eigenfrequencies �m1
and �m2� �44,47�. Therefore wandering breathers can be con-
sidered as weakly coupled phase-coherent nonlinear macro-
scopic oscillators.

Equations �25� and �26� can be solved analytically for the
given initial conditions with the use of the variational
method. For two identical chains, with �m1=�m2��m, we
assume that the solution of Eq. �26� has the following form:

cos � = A�t�/sin�2�� , �31�

where A=0 for sin�2��=0. Using this ansatz, we get from
Eqs. �25� and �26� that

Ȧ = − 6
�max

2

C
sin�2��cos�2���̇ . �32�

For the aforementioned initial condition, when A=0 for
sin�2��=0, from Eq. �32� we find

A = −
3�max

2

2C
sin2�2�� , �33�

cos � = −
3�max

2

2C
sin�2�� = −

3�max
2

2C
�1 − z2, �34�

which corresponds to �= �
2 mod � for sin�2��=0. This ex-

act solution of Eqs. �25�–�28�, conserves the effective Hamil-

tonian �30�: Hef f =
3�max

2

2� . The important feature of this solu-
tion is that the relative phase � is self-locked to the value
�
2 mod � by the total population imbalance �z�=1 of the two
coupled chains.

The phase portrait of Eq. �34� in the �-z plane is given by

�� cos ��2 + z2 = 1, �35�

where �=2C /3�max
2 ; see Fig. 1.

With the use of Eq. �34�, Eqs. �22� and �25�–�28� will take
the following form:

�2 = �m
2 + �9

2
� − 8�2�max

2 − k2, �36�

�̇ =
3

2�
�max

2 cos�2��, �̇ =
C

2�
sin � , �37�

�̇ =
3

2�
�max

2 z, ż = −
C

�
�1 − z2 sin � . �38�

Finally, for two identical weakly coupled chains with l�1�

= l�2�=1 and �m�2 we get from Eqs. �37� the following two
equivalent physical-pendulum equations:

�̈ + �0
2 sin � = 0 �39�

for �=4�, where �0=3�max
2 /4, and

�̈ +
C2

4
sin � = 0 �40�

for �=2�−�. In the following we will solve Eq. �39� with
the initial condition ��0�=0, which corresponds to zero
complex field 2 in the second chain at t=0 �or z�0�=1� and
which is realized in our simulations. Therefore we will as-

sume that ��0�=0, ��0�= �
2 mod �, and �̇�0�=C. The cor-

responding initial conditions for � in Eq. �40� are ��0�
=0 mod 2� and �̇�0�= 3

2�max
2 .

The solution of the nonlinear physical-pendulum equation
is well known �see, e.g., Ref. �48�� and can be written in
terms of elliptic functions �with the elliptic modulus �

0 π/4 π/2 3π/4 π
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−0.5

0

0.5

1

relative phase Φ

po
pu

la
tio

n
im
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la

nc
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z

1

2

3

4 5 6 7 8

FIG. 1. �Color online� Phase portrait of a wandering breather in
two weakly coupled nonlinear chains or two weakly linked BECs in
a symmetric double-well potential with the initial conditions �z�0��
=1 and ��0�= �

2 mod �, which is given by �� cos ��2+z2=1, �
=2C /3�max

2 , Eq. �35�. Lines 1–8 correspond, respectively, to k
=0.5, 0.8, 0.95, 1, 1.05, 1.25, 2, and 10. Lines 1–3 describe the
self-trapped mode, line 4 describes the separatrix, and lines 5–8
describe the wandering breather or new tunneling mode of two
weakly linked BECs.
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=2C /3�max
2 �. Namely, one can obtain from Eq. �39� the

following time evolution and fundamental oscillation fre-
quency �4� for �=4�:

4� = 2 arcsin�� sn��0t,���, � � 1, �41�

4� = 2 arcsin�sn���0t,1/���, � � 1, �42�

�4� =
�

2

�0

K���
, � � 1, �43�

�4� = �
�0�

K�1/��
, � � 1, �44�

where “sn” is the Jacobian elliptic sine and K���
=F�� /2,�� is a complete elliptic integral of the first kind.
The solution for �=2�−� can also be found with the use of
Eq. �40�.

The important property of the solution of the physical-
pendulum Eq. �39� �or �40�� is the existence of two qualita-
tively different dynamical regimes of Eqs. �37� and �38�,
which are detached by a separatrix corresponding to the con-
dition �=1 or 3�max

2 =2C.
For �
1 or �max

2 �2C /3, the parameter � linearly
grows with the “running” time t̃� t− k

�x, while ����0�
= �

2 �see, e.g., Ref. �49��:

� � C̃
t̃

4
+

9�2max
4

64C̃2
sin�C̃t̃� ,

� �
�

2
+

3�max
2

2C̃
sin�C̃

t̃

2
� ,

z � cos�C̃
t̃

2
� ,

C̃ = C −
�0

2

C
= C −

9�2max
4

16C
. �45�

In this regime � spans the full range from 0 to 2�, which,
according to Eqs. �19� and �20�, corresponds to the complete
energy exchange between the nonlinear chains and therefore
to the breather, wandering between the two chains. Accord-
ing to Eq. �21�, the flux of the interchain energy exchange in

this regime, J1�Cmax sin 2� sin 	=Cmax sin�C̃t̃ /2�, has

the rate �beat= C̃ /2= �C−9�2max
4 / �16C�� /2 for �
1,

which continuously decreases with the increase of the ratio
�max

2 /C below the separatrix. Since 
cos �2�= 
sin �2�
=1 /2 in this mode, the time-averaged inverse localization
lengths �1,2, Eq. �23�, are equal in the two chains: �1=�2
=max

�3�−8�2 �for 3��8�2; see Sec. III A below�.
This dynamical regime is analogous to the complete en-

ergy exchange in the beating in a system of two coupled
harmonic oscillators. The solution �=Ct̃ /4, �= �

2 , and z
=cos�Ct̃ /2� can be obtained directly from the linearized
equations �14�.

A similar tunneling mode can also be realized for BECs in
a symmetric double-well potential when the condensate is
initially loaded into one of the wells, z�0�= �1; cf. Ref. �29�.
In such a mode the relative phase of the coupled BECs will
oscillate around �

2 mod � �see Eq. �45� and Fig. 1�, which
can be observed by means of interference. This tunneling
mode is similar to but is different from the mode of Joseph-
son plasma oscillations, already realized in experiments �31�,
in which the relative population imbalance is always less
than 1 and the relative phase of the coupled BECs oscillates
around 0 �mod 2��. The substantial difference between the
time evolution of the average relative phase in the tunneling
mode observed in �31� and in the mode predicted in Fig. 1 is
caused by the difference in the initial states �population im-
balance and relative phase� of two weakly linked Bose-
Einstein condensates: it is �z�0���1 and ��0�=0 mod 2� in
the former case while it is �z�0��=1 and ��0�=� /2mod � in
the latter case.

It is worth emphasizing that according to Eqs. �19�, �20�,
and �45�, the temporal Fourier spectrum of the wandering
breather is determined both by the frequency � and time
dependence of �. The latter produces in the spectral density
of the wandering breather a series of doublets of frequencies,
shifted upward and downward with respect to the fundamen-

tal breather frequency �: ��n�beat=��nC̃ /2, n=1,2 , . . .;
see Eq. �45�. The lower frequencies in such doublets can
become less than the threshold frequency �m in the phonon
band of the coupled chains �see the dashed line in Fig. 8
below�, which results in weak damping of the coupled non-
linear oscillations caused by the emission of small-amplitude
phonons in the chains.

In the opposite limit k�1 or �max
2 
2C /3, one has

� �
C

3�̃max
2

sin�3

4
�̃max

2 t̃� ,

� �
�

2
+

3

4
�̃max

2 t̃ +
C2

18��max
2 �2sin�3

2
�̃max

2 t̃� ,

z � 1 −
2C2

9��̃max
2 �2

sin2�3

4
�̃max

2 t̃� ,

�̃max
2 = �max

2 −
C2

9�max
2 . �46�

In this mode the interchain energy exchange between the
coupled chains is incomplete since always ��1 �cf. Eqs.
�19� and �20��. With the increase of the ratio �max

2 /C
beyond the separatrix, the flux of such incomplete
energy exchange, J1� �C2 /max�sin 2� sin �= �C2 /2max�
�sin�3�̃max

2 t̃ /2� �cf. Eq. �21��, gradually decreases, but its

rate 3�̃max
2 /2 gradually increases �see Eq. �46��. This mode

is similar to the macroscopic quantum self-trapping of inter-
acting Bose-Einstein condensates in a single-bosonic Joseph-
son junction �29,31–33�, as well as to the asymmetric non-
linear mode �known, e.g., for two coupled nonlinear
waveguides �43,50,51��, in which one system, here system 1,
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carries almost all vibrational energy while the other one is
almost at rest.

The separatrix k=1 or �max
2 =2C /3 is characterized by

zero frequency of the physical pendulum �39� �or �40��,
which corresponds to the infinite period of the interchain
energy exchange. For the initial conditions considered, the
separatrix is described by the following solution of Eqs. �37�
and �38�:

� = arctan�exp�C

2
t�� −

�

4
,

� = 2arctan�exp�C

2
t�� ,

z�0� = 1, z��� = 0,

��0� =
�

2
, ���� = � . �47�

The flux of the interchain excitation exchange is zero at the
separatrix for t→�: Ji=0 since sin �=0; see Eq. �21�. On
the other hand, the breather frequency � is finite at the sepa-
ratrix and is equal to

�sep = �m + �9�/8 − 2�2�max
2 − k2/4

� 2 + C − 2�2max
2 − k2/4, �48�

since 3�max
2 =2C at the separatrix and �m�2+C /4; see

Eqs. �12�, �19�, �20�, and �36�. The value �sep=�4+4C
�2.0976 for C=0.1, �=0, and k�1 coincides with very
good accuracy with the one, �sep�2.098, which follows
from our numerical simulations of the separatrixlike dynam-
ics of the wandering breather in two coupled �-FPU chains;
see Figs. 7 and 11 below. In corresponding dimensionless
units, the above separatrix, Eq. �47�, gives the position, in
terms of the spatial soliton amplitude and interfiber coupling,
of the numerically revealed separatrixlike regime between
the regimes of the total and partial exchange of photon en-
ergy between two coupled nonlinear optical fibers �fiber di-
rectional coupler�, described by two coupled nonlinear
Schrödinger equations �52�. The existence of a separatrix
was revealed in different models of nonlinear dimer �two
coupled nonlinear systems with two degrees of freedom�,
both classical and quantum, in Refs. �42–44,53,54�.

The important result of our studies in this field is that the
dynamics of two coupled nonlinear systems with many de-
grees of freedom �two weakly coupled low-amplitude and
macroscopically wide breathers� can be �approximately�
mapped onto the dynamics of the exactly solvable nonlinear
dimer. The �macroscopically� large number of degrees of
freedom in the considered coupled systems allows also one
to consider their relative phase � as an observable quantity,
as in the case of weakly coupled interacting Bose-Einstein
condensates �31�.

It is worth mentioning that the form and corresponding
frequency of a breather in an isolated anharmonic chain can
be obtained in our model only in the self-trapping breather
regime, in which one can consider the limit of C→0. Indeed,

as follows from Eq. �46�, in this limit one has �=0 �z=1�
and the breather frequency, according to Eqs. �19�, �20�, and
�36�, is equal to

��max,k� = �m + �9

8
� − 2�2�max

2 +
3

8
�max

2 −
1

4
k2

= 2 + �3

2
� − 2��max

2 −
1

4
k2. �49�

This expression for the breather frequency is fully consistent
with the known expression for the frequency of an immov-
able or slowly moving breather in a single �-�-FPU chain in
the small-amplitude limit; see, e.g., Refs. �2,21�. It is impor-
tant to emphasize that to get this expression for breather
frequency �, we have explicitly taken into account the linear
increase in time �winding up� of the relative phase −� /2 in
Eq. �19�, given by Eq. �46� in the self-trapping regime. A
similar winding up of the relative phase of two coupled in-
teracting Bose-Einstein condensates in the nonlinear self-
trapping mode has been recently measured directly in a
single-bosonic Josephson junction by means of interference
�31�. This finding gives us an additional argument in favor of
the similarity between the macroscopic tunneling quantum
dynamics and phase-coherent dynamics of weakly coupled
breathers.

III. NUMERICAL SIMULATIONS AND COMPARISON
WITH ANALYTICAL PREDICTIONS

To simulate the dynamics of coupled nonlinear lattice ex-
citations, we numerically integrate Eqs. �2� for two identical
chains, l�1�= l�2�=1, ��1�=��2���, and ��1�=��2���, with
absorbing edge conditions. We use the latter conditions in
order to get rid of weak radiation, caused by the wandering
breather �because such radiation will stay in the system for-
ever in the case of periodic boundary conditions�. For the
convenience of the numerical simulations, the Fermi-Pasta-
Ulam Hamiltonian �1� for two coupled chains with N par-
ticles can be written in the following equivalent dimension-
less form:

H = �
i=1

2 ��
n=1

N
1

2
u̇n

�i�2 + �
n=1

N−1

V�un+1
�i� − un

�i�� + �
n=1

N

U�un
�i� − un

�3−i��� ,

�50�

where the potentials V�x� and U�x� describe, respectively, the
intra- and interchain interactions. We normalize the dimen-
sionless potential V�x� with the conditions V�0�=V��0�=0
and V��0�=1, while the potential U�x� we normalize with the
conditions U�0�=U��0�=0 and U��0�=C�0. According to
Eq. �1�, we take the following form for the intra- and inter-
chain potentials:

V�x� =
1

2
x2 +

1

3
�x3 +

1

4
�x4, �51�
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U�x� =
1

2
Cx2, �52�

with C=0.1 describing the strength of the weak interchain
coupling.

Then the equations of motion �2� will take the form as

ün
�i� = F�rn

�i�� − F�rn−1
�i� � + G��n

�i�� , �53�

where rn
�i�=un+1

�i� −un
�i�, �n

�i�=un
�3−i�−un

�i�, i=1,2, F�r�=V��r�=r
+�r2+�r3, and G���=U����=C�.

We search for the localized nonlinear lattice excitation
�discrete breather� as a solution of a set of the nonlinear
equations F�X�=0, where the vector X= �un

�i��0� ,
u̇n

�i��0��i=1,n=1
2,N gives the initial values for the localized nonlin-

ear lattice excitation �discrete breather� as a solution of a set
of nonlinear equations �53�, while the vector F�X�
= �un

�i��tp�−un
�i��0� , u̇n

�i��tp�− u̇n
�i��0��i=1,n=1

2,N gives the change of
the vector X during the one period of breather oscillations
tp=2� /�. To find the value of F�X�, one needs to integrate
Eqs. �53� numerically during the time interval �0, tp�. The use
of such numerical method for finding of an exact breather
solution is explained in details in Ref. �10�. The main diffi-
culty in this numerical method is to find an appropriate initial
vector X for the subsequent iterative solution of the nonlin-
ear equations �53�.

The vibrational energy of the breather is determined cor-
respondingly as

E = �
i=1

2 � 1

2tp
�
n=1

N 	
0

tp �u̇n
�i�2 + V�rn

�i�� + V�rn−1
�i� � +

1

2
C�n

�i�2�dt�
� �

i=1

2

Ei. �54�

A. Simulation of dynamics of discrete breathers
in two weakly coupled chains

Equations �53� for two coupled chains can be reduced to
the equations for one chain in the case of symmetric, un,1
�un,2�un, and antisymmetric, un,1=−un,2�un, motion in
the chains. In the symmetric case the Hamiltonian �50� has
the usual form for a single FPU chain:

H = 2�
n=1

N �1

2
u̇n

2 + V�un+1 − un�� . �55�

For the symmetric intrachain potential V�r�—i.e., for
�=0—equations of motion in a system of two chains can
also be reduced to the one-chain equations in the case of
antisymmetric �antiphase� motion in the chains. In this case
the reduced system has a standard Hamiltonian of the FPU
chain on an external harmonic substrate:

H = 2�
n=1

N �1

2
u̇n

2 + V�un+1 − un� + 2Cun
2� . �56�

Discrete breathers in such a chain with C�0 were studied in
detail; see, e.g., Ref. �10�. In the system with Hamiltonian

�56�, either with C=0 or C�0, there are two types of dis-
crete breathers with frequency ���max��4+2C; see, e.g.,
Refs. �3–5�. The center of symmetry of the breather coin-
cides with a given lattice site in one breather type, and it
coincides with a middle point between two neighboring sites
in another type. In both cases of the symmetric and antisym-
metric breathers in the coupled chains, the vibrational energy
of the nonlinear excitation, Eq. �54�, is equally distributed
between the chains. Numerical analysis of Eqs. �53� reveals
that besides these nonlinear eigenmodes there is an “asym-
metric” mode in which only one chain is involved in the
vibrations while the vibrations of the other chain “adiabati-
cally” follow the vibrations of the main one. The character-
istic form of the displacement patterns in one- and two-chain
antisymmetric breathers is shown in Fig. 2, while the depen-
dence of their energies on breather frequency � is shown in
Fig. 3.

As we can see from a comparison of Figs. 2�c� and 2�d�,
the magnitudes of the static displacement kinks in the center-
of-mass displacement differences 	w0

�c.m.�=w0
�c.m.��+��

−w0
�c.m.��−�� differ almost twice for the two- and one-chain

breathers in coupled chains with cubic intrachain anharmonic
potential. This is in accordance with the prediction of Eqs.
�9� and �10� that the ratio of such magnitudes is given mainly
by the ratio of the total vibrational energies of the corre-
sponding breathers. As follows from Fig. 3�c�, the ratio of
the �total vibrational� energies of the two- and one-chain
breathers for �=2.3, �=−1, and �=1 is indeed close to 2.

In the absence of the cubic anharmonic intrachain poten-
tial ��=0, �=1�, the energy of the antisymmetric two-chain
breather monotonously increases from zero, for �=�max
=�4+2C�2.05, to the infinity for �→�; see Fig. 3�a�.
There is only one type of antisymmetric two-chain breather
for low frequencies �max���2.066, but at �=2.066
��bif the antisymmetric two-chain breather bifurcates and
the one-chain breather mode detaches from the two-chain
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FIG. 2. �Color online� Displacement patterns for �a� one-chain
breather and �b� two-chain antisymmetric breather with frequency
�=2.3 for the quartic intrachain anharmonic potential ��=0, �=1�;
�c� and �d� show displacement patterns for one-chain and two-chain
breathers, respectively, in the presence of cubic and quartic intrac-
hain anharmonic potentials ��=−1, �=1� for the same breather
frequency. The patterns for the first and second chains are indicated
by open circles and open diamonds, respectively, and are shown at
the moments when all particle velocities are zero.
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mode. The one-chain breather exists for all frequencies �
��bif.

We can get an analytical estimate for the characteristic
frequency �bif with the use of the generic evolution equa-
tions �27� and �28�. Indeed, for positive �, �=�, and �m1

=�m2 one has an equation for the steady state, with �̇=0 and

�̇=0, the dynamical state in the coupled chains:

�1 − z2 =
C

3�max
2 , �57�

which has a solution for real z only for 3�max
2 �C. Using

this condition and Eq. �36� for the breather frequency, in the
case of �=0 and k=0, we get the following expression for
�bif at the appearance of the new solution �for C=0.1�:

�bif =�4 +
5

2
C = �4.25 = 2.062, �58�

which coincides with good accuracy with the numerically
revealed value �bif =2.066. As follows from Eq. �57�, at the

bifurcation point 3�max
2 =C one has z=0. This corresponds

to the equal populations of the coupled chains, which in turn
results in equal energies of the two- and one-chain breather
solutions at the bifurcation point; see Fig. 3�a�.

Two types of the coupled breathers, the one- and two-
chain breathers, can exist also in the presence of a cubic term
in the anharmonic intrachain potential V�x�, Eq. �51�. The
effect of the cubic term in the anharmonic intrachain poten-
tial on the breather dynamics in a single FPU chain was
studied in Refs. �2,39–41,55�. For instance, it was shown in
Ref. �2� that low-amplitude breathers can exist in a single
FPU chain only in the case of relatively weak cubic anhar-
monic term in the intrachain potential V�x�—namely, when
���3� /4. �For the case considered of �=1, this require-
ment reduces to ���3 /4=0.866.� In fact, this requirement
corresponds to the requirements ���m in Eq. �49� and �1

2

�0 in Eq. �23� for the breather frequency and inverse local-
ization length in a single FPU chain �for �=0 and k=0�.

From our analysis we can conclude that bifurcation of
breather modes in two weakly coupled nonlinear chains with
cubic intrachain anharmonic potential occurs only for �
��3� /8. For larger cubic intrachain anharmonic potential
���3� /8, there are no low-amplitude breathers in the
coupled chains, but there are finite-amplitude breathers with
a threshold in energy which does not go to zero for �
→�max+0; see Fig. 3�c� and cf. Fig. 4 in Ref. �55�. Indeed,
from Eq. �23� it follows that for the wandering breather,
when 
cos2 ��= 
sin2 ��=0.5, the inverse localization
lengths �1,2 are real positive only for ���3� /8, when the
above picture of the breather periodic translation �wander-
ing� between the coupled chains takes place. On the other
hand, for ���3� /8 �or ��0.61 in the case considered�,
one has to take into account the contribution to the breather
frequency � and inverse square localization lengths �1,2

2 of
the finite-amplitude breather of the terms �max

4 �with posi-
tive coefficients�. These terms will result in a finite �thresh-
old� energy of the breather with minimal possible frequency
�min��m. According to Eqs. �14�, the existence of such a
threshold breather amplitude and energy in the coupled
chains with ���3� /8 is related with the static strain in both
chains ��w0

�c.m.� /�x=−�
�1�2+ �2�2��, which accompanies
breathers in coupled chains with nonsymmetric anharmonic
potentials and which is localized around the central region of
the breather; see Eqs. �9� and �10� and Figs. 2�c� and 2�d�.

In the coupled chains with ���3� /8, there is no bifur-
cation of the two-chain breather mode: there are two sepa-
rated breather modes, the one- and the two-chains ones, for
all the frequencies ���min. The energy of the two-chain
breather mode is always larger than the energy of the one-
chain one, and there are thresholds in energies for both types
of the breathers; see Fig. 3�c�. In the following we will re-
strict ourselves only to the case of weakly coupled �-FPU
chains with zero cubic anharmonic intrachain potential and
assume everywhere below that �=0 and �=1.

For the large-amplitude �high-frequency� nonlinear oscil-
lations in two weakly coupled �-FPU chains, there are many
coupled �bound� antisymmetric breather modes whose
strongly localized displacement patterns are shifted one with
respect to another along the chains; see Figs. 4�a�–4�j�. In
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FIG. 3. �Color online� Dependence of breather energy E in a
system of two coupled chains on breather frequency � for different
strengths of cubic intrachain anharmonic potential: �=0 �a�, �
=−0.5 �b�, and �=−1 �c�, with the same strength of quartic anhar-
monic potential �=1. Lines 1, 3, and 5, correspond to antisymmet-
ric two-chain breathers; lines 2, 4, and 6 correspond to one-chain
breathers. All the lines correspond to the breathers with centers of
symmetry located in the middle of two nearest particles; cf. Figs.
2�a�–2�d�. The dotted vertical line in all the plots shows the upper
boundary of phonon spectrum in the two-chain system, �4+2C
�2.05.
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these figures the total breather energy E, Eq. �54�, the loca-
tion of the breather center in the corresponding chain, and
the “binding energy”—i.e., the gain in energy due to breather
coupling, 	E=E1

�1ch�+E2
�1ch�−E—are indicated for breathers

with �high� frequency �=5. Here E1,2
�1ch� indicate the energy

of the corresponding one-chain breather located in the corre-
sponding chain; see Figs. 4�a� and 4�b� for the two main
types of the one-chain breathers: with the center of symmetry
placed in the middle of two neighboring sites or in a particu-
lar site. As is seen from Fig. 4, the binding energy depends
on the type of the bound breathers and apparently decreases
with an increase of the interbreather distance �along the
chains�. Besides such one-frequency coupled breather
modes, there are also two-frequency nonlinear modes which
bind together large-amplitude breather modes in two chains
with different but commensurate frequencies �1 and �2
��1. The dependence of the energy of several types of such
commensurate-frequency bound breather modes on their
maximal frequency �2 is shown in Fig. 5.

We also study the interaction of breathers in two weakly
coupled �-FPU chains. For this purpose, we numerically in-
tegrate equations of motion �53� with the initial conditions
which describe a breather with frequency �1 in the first chain

and a breather with frequency �2 in the second chain. In Fig.
6 we show the change in time of the spectral density p��� of
the emerged localized vibrational mode in the coupled neigh-
boring chains with two breathers with initial frequencies
�1=2.6 and �2=3. As one can see in this figure, a two-
frequency breather is generated in the system with the ratio
of frequencies �1 :�2=6:7, which subsisted for 1200 units
of dimensionless time �when time is measured in units in
which �m=�4+C�2�. Later the breather with higher fre-
quency �and energy� starts to adsorb the energy of the
breather with smaller frequency �and energy�, which de-
creases the frequency of the latter. As a result, the one-chain
breather with frequency �=3.160 is formed. Hence the
breather with higher energy completely adsorbs the breather
with smaller energy. This recalls the merging of low-
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FIG. 4. �Color online� Displacement patterns for two-chain
breathers with �=5 in a system of two chains with pure quartic
intrachain anharmonic potential, with �=0, �=1. The patterns for
the first and second chains are indicated by open circles and open
diamonds, respectively, and are shown at the moments when all
particle velocities are zero. Here E is the breather energy, n1 and n1

are the locations of the center of symmetry of the breather in the ith
chain, and 	E=E1

�1ch�+E2
�1ch�−E is the gain in energy due to

breather coupling �breather “binding energy”�.
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FIG. 5. �Color online� Breather energy E in a system of two
chains versus frequency �. Dashed line 1 in the inset corresponds to
symmetric two-chain breather, line 2 describes two-chain antisym-
metric breather, and line 3 describes a one-chain breather. Lines 4–7
in the main plot correspond to two-chain excitations which couple
breathers with two different commensurate frequencies with ratios
�1 :�2=1:2, �1 :�2=2:3, �1 :�2=3:4, and �1 :�2=4:5, respec-
tively. Frequency � in the plot always denotes maximal frequency
�2.
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FIG. 6. Time evolution of the spectral density p��� of the non-
linear localized excitation of two weakly coupled chains under the
initial excitation of a breather with frequency �1=2.6 in one chain
and a breather with frequency �2=3 in another chain.
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amplitude �small-energy� breathers in a single 1D �-FPU
chain, which results in a single localized object �discrete
breather� containing almost all of the initial total vibrational
energy of the lattice �21�. If we initially prepare two breath-
ers with more close initial frequencies �1=2.7 and �2=3, a
two-chain one-frequency breather with antisymmetric dis-
placement pattern is formed �not shown�. In this case the
interaction and energy exchange of the two breathers with
initially different frequencies result in frequency equaliza-
tion. Therefore our simulations show that despite the exis-
tence of the coupled two-frequency breathers, the one-
frequency coupled breather modes are in general more
stable.

B. Simulation of wandering breathers
in two weakly coupled chains

Here we will study the dynamics of two weakly coupled
chains under excitation of a breather only in one chain while
keeping the other chain initially at rest. This amounts to nu-
merical integration of Eqs. �53� for chain 1 under the initial
conditions un

�2�=0 and u̇n
�2�=0. As a result of the interchain

interaction, the excitation initially located in one chain can
start to periodically translate �wander� between the coupled
chains. Such an interchain energy exchange can be studied
quantitatively by measuring the time dependence of the en-
ergy Ei in each chain; see Eq. �54�.

In Fig. 7 we plot the energy of each chain Ei as a function
of time when the immovable breather �with V=0� is excited
in chain 1 with a given frequency �. For relatively small
breather amplitude and corresponding dimensionless
breather frequency, �=2.030��m=�4+C=2.025, an almost
complete interchain energy exchange occurs when the total
breather energy E=E1+E2, Eq. �54�, is periodically located
in one of the coupled chains; see Fig. 7�a�. From this figure
we can measure the period of wandering Tw, which is close
to 126. Taking into account that the frequency of the com-
plete interchain energy exchange for the small-amplitude
breather is equal to C /2=0.05 �see Eqs. �21� and �45��, the
wandering period Tw is equal to 4� /C=125.66, which coin-
cides to very high accuracy with the period, which can be
found from Fig. 7�a�. With the increase of breather amplitude
and frequency, the period of the interchain energy exchange
increases, in accordance with Eq. �45�, but the exchange re-
mains complete up to the critical breather frequency �and
corresponding amplitude�, which according to Figs. 7�b� and
7�c� is very close to �=2.0980. This critical breather fre-
quency should be compared with the value of frequency of
the immovable breather at the separatrix, �sep=�4+4C
=2.0976 for C=0.1, �=0, and k=0 �see Eq. �48��, which
also shows very good agreement with the prediction of the
approximate physical pendulum, Eq. �39� �or �40��. For the
higher breather frequencies ��2.098 �and corresponding
breather amplitudes�, the interchain energy exchange is no
longer complete and corresponds to the exchange of rela-
tively small fraction of the total breather energy E; see Figs.
7�c� and 7�d�. For �=2.1106, the main part of the breather
energy remains all the time in chain 1 where the breather was
initially excited, which corresponds to nonlinear self-

trapping of the breather; see Fig. 7�d�. The transition from
the oscillatory energy exchange, Fig. 7�b�, to the self-trapped
mode, Fig. 7�c�, is very sharp: the change of breather fre-
quency by the crossing of the separatrix occurs to the fifth
digit only. One can also see a large difference in energy
exchange rate in the wandering breather mode, Fig. 7�a�, and
in the separatrix mode, Figs. 7�b� and 7�c�: with the change
of the breather frequency from �=2.0300 to �=2.098, the
rate of energy exchange decreases more than 20 times. This
observed feature of the coupled nonlinear systems is also in
perfect accordance with the prediction of the physical pen-
dulum, Eq. �39� �or �40�� for the separatrix mode with the
infinite period of the interchain energy exchange, described
by Eq. �47�.
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FIG. 7. �Color online� Time evolution of chain energies E1

�green, light gray� and E2 �blue, dark gray� of immovable breather
in chains 1 and 2 versus time t, obtained from numerical solution of
Eqs. �53� with the initial breather excitation in chain 1 �for immov-
able chain 2� with frequency �a� �=2.0300, �b� �=2.0980, �c� �
=2.0981, and �d� �=2.1106. Two identical chains with �=0, �=1,
and C=0.1 and absorbing edges were used in simulations. The
separatrix solution of Eq. �39� corresponds to �=2.0976. Time evo-
lution is shown after t=105 from the excitation instant when all
transients died out.
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In Fig. 8 we show the Fourier power spectrum of the
wandering breather. As was explained above in connection
with the complex wave field of the wandering breather, Eqs.
�19� and �20�, the temporal Fourier spectrum of the wander-
ing breather consists of the main peak at the breather funda-
mental frequency � and its �upper and lower� frequency
satellites at ��n�beat, n=1,2 , . . ., where �beat��C
−9�2max

4 / �16C�� /2 is the rate of complete interchain en-
ergy exchange in the wandering breather mode; see Eq. �45�.
The value of �beat�0.05 for low-amplitude wandering
breathers in the chains with the coupling constant C=0.1 is
in good agreement with the inset in Fig. 8. Therefore we can
quantitatively reproduce both the numerically observed wan-
dering �beating� period, Fig. 7�a�, and wandering frequency,
Fig. 8, of the low-amplitude and macroscopically wide
breather.

The nonlinearity of the physical pendulum Eq. �39� �or
�40�� results in all higher harmonics �second, third, etc.� of
the beating frequency �beat and, respectively, in the appear-
ance of the corresponding doublets of the breather frequency
satellites: the satellites of the first and second harmonics of
the beating frequency are clearly seen in the inset in Fig. 8.
As we can also see in the inset in Fig. 8, the lower-side
satellites enter the continuum of low-amplitude phonons, �
−n�beat��m=�4+C=2.025, n=1,2 , . . .. The latter means
that the wandering breather �weakly� emits low-amplitude
lattice phonons, which results in a �adiabatically slow� low-
ering of breather energy. This in turn means that the wander-
ing breather is not an exact nonlinear eigenmode of two
weakly coupled anharmonic chains, in contrast to the two-
chain symmetric and antisymmetric breathers.

In Fig. 8 one can also see the third harmonic of the main
breather frequency �, which can be modeled with the use of
the full harmonics, Eqs. �12� and �53�, instead of Eqs. �14�
written in the resonance approximation. For the �-FPU chain
�with zero cubic anharmonic intrachain potential�, there are
only odd harmonics of the fundamental breather frequency.

In a single chain, the higher harmonics of the fundamental
breather frequency were first analytically predicted and de-
scribed in Ref. �2� and were numerically observed, up to the
ninth harmonic, in Ref. �22�. In Fig. 9 we show the power
spectrum of the one-chain breather with frequency �=4 in
the coupled chains with �=0, �=1, and C=0.1. This spec-
trum clearly shows the existence of higher odd harmonics,
up to the seventh one, of the fundamental frequency. Since
the breather with such frequency is in the self-trapped mode
in the considered coupled system ��=4��sep�2.1�, its dy-
namics and power spectrum are similar to the ones of the
breather in a single chain; cf. Refs. �21,22�. Importantly, the
Fourier spectrum in Fig. 9 corresponds to the almost “exact”
breather solution found in the �-FPU chain with zero vibra-
tional background, while the breather, studied in Refs.
�21,22�, was self-assembled on a nonzero vibrational back-
ground as a result of the modulational instability of the short-
wavelength modes in the �-FPU chain.

In view of the present work, we can relate the doublets of
satellites of the fundamental breather frequency �and its odd
harmonics� in a single chain observed in Ref. �22� with the
beating between two breather states with different center lo-
cations �and symmetry�; see Figs. 4�a� and 4�b�. According
to these figures, the breather with the intersite center loca-
tion, Fig. 4�a�, has higher frequency than the breather with
the same energy with the on-site center location, Fig. 4�b�.
According to the generic equation �27�, the frequency differ-
ence under the proper initial conditions can cause breather
wandering �beating� between two nearest lattice sites. The
beating in turn can induce the steady-state translation of the
breather along the chain with �slow� velocity V�1, propor-
tional to the �small� beating frequency �as was qualitatively
explained in Ref. �22��. In Sec. III C we will discuss similar
lateral translations of the 1D breather in a system of parallel
weakly coupled nonlinear chains with transverse group ve-
locity, proportional to the beating frequency in the case of
two coupled chains. In contrast to the low-amplitude 1D
breather, laterally moving and losing its energy due to pho-
non emission in a system of nonlinear chains �see Figs. 14�a�
and 14�c� below�, the high-frequency slowly moving
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FIG. 8. �Color online� Spectral density p��� of a wandering
breather in a system of two weakly coupled chains under the initial
excitation of a breather with frequency �=2.05. The dotted vertical
line indicates the upper bound of phonon frequency �m=�4+C
�2.025 in Eqs. �14�. The inset shows fine details of the spectral
density in close vicinity of the fundamental breather frequency.
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breather in a single chain does not emit phonons in the chain
because the fundamental frequency satellites �caused by the
beating� are all out of the phonon band; see Fig. 3 in Ref.
�22�.

A similar picture of the complete interchain energy ex-
change below the separatrix takes place also for the wander-
ing breather, slowly moving along the chains. To model this
effect, we numerically integrate Eqs. �53� with the initial
conditions which correspond to the excitation of the moving
in chain-1 breather solution, while keeping chain 2 at rest,
with the following ansatz for lattice displacements:

un
�1��t� = �− 1�nmax cos�kn − �t�/cosh���n − Vt�� ,

un
�2��0� = 0, u̇n

�2��0� = 0, �59�

where max, �=��max,k�, and V�−k /��1 are the ampli-
tude, frequency, and slow velocity of the breather; cf. Eq.
�19�.

In Figs. 10 and 11 we show the energy, versus time and
site, of a slowly moving breather, with velocity V=0.1, wan-
dering between two weakly coupled chains. In Fig. 10 we
show the energy of the wandering small-amplitude breather
below the separatrix: with max=0.1, Figs. 10�a� and 10�b�,
and max=0.2, Figs. 10�c� and 10�d�. Both figures show the
complete interchain energy exchange. From Figs. 10�a� and
10�b� one can find that the period of complete interchain
energy exchange �wandering� Tw�128 for max=0.1 is very
close to the one Tw�126 in Fig. 7: both figures describe the
almost harmonic wandering of a small-amplitude breather,
with wandering frequency C /2=0.05. Below the separatrix,
the wandering period Tw increases with breather amplitude:
one has Tw�179 for max=0.2 in Figs. 10�c� and 10�d�.

Figure 11 shows the dynamics of a slowly moving breather
initially excited in chain 1 with amplitude max=0.26, which
is very close to the one at the separatrix: max

�sep�=�2C /�
=0.2582. Separatrixlike dynamics, similar to the one shown
in Fig. 7�b�, is well established for the later delay time
t�4000, when almost total energy of the moving breather
periodically translates �wanders� between the chains. In Fig.
12 we show the dynamics of slowly moving breather, ini-
tially excited in chain 1 with velocity V=0.1 and amplitude
max=0.3, which is beyond the separatrix. Here the inter-
chain energy exchange is no longer complete, as in the case
of an immovable breather beyond the separatrix �cf. Fig.
7�d��, but the period of such an exchange, Tx�125, is much
shorter than that close to the separatrix �cf. Fig. 11�.

A slowly moving wandering Bose-Einstein condensate
can be realized in two coupled 1D atom waveguides �see,
e.g., Refs. �28,56��, for the BEC of weakly interacting atoms
with non-negligible interwaveguide tunneling coupling and
with total initial population imbalance �z�0��=1.

Therefore the initial excitation of the low-amplitude �low-
frequency� breather, either immovable or slowly moving, in
one chain always results in its periodic transverse translation
�wandering� between the two weakly coupled chains. Hence
a natural question arises as to what happens if one deals with
a system of M �2 parallel-coupled anharmonic chains. Is the
wandering of the breather, initially excited at the edge �out-
ermost� chain, across all chains possible? To study this prob-
lem, we start with a system of M �2 parallel weakly coupled
anharmonic chains.

C. Simulation of breathers in a system of M�2 parallel
weakly coupled anharmonic chains

The quasi-1D system of M parallel weakly coupled anhar-
monic chains, with nearest-neighbor intra- and interchain in-
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FIG. 10. Periodic translation of a slowly moving breather between two coupled chains with C=0.1, �=0, and �=1. Time dependence of

breather energy distribution in chain 1 ��a� and �c�� and chain 2 ��b� and �d�� is shown. The breather was initially excited in chain 1 with
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teractions, is described by the following Hamiltonian:

H = �
m=1

M

�
n=1

N
1

2
u̇m,n

2 + �
m=1

M

�
n=1

N−1

V�um,n+1 − um,n�

+ �
m=1

M−1

�
n=1

N

U�um+1,n − um,n� , �60�

where V�x� and U�x� are given by Eqs. �51� and �52� and
n=1, . . . ,N and m=1, . . . ,M numerate, respectively, sites
along the chains and the chains.

The Hamiltonian �60� generates the corresponding equa-
tions of motion,

üm,n = −
�H

�um,n
, �61�

which in the linear approximation have the form

üm,n = um,n+1 − 2um,n + um,n−1 + C�um+1,n − 2um,n + um−1,n� .

�62�

Plane linear waves �phonons� in such a system, with

um,n = u exp�iq1n + iq2m − i�t� , �63�

have the dispersion

��q1,q2� = �2�1 − cos q1 + C�1 − cos q2�� , �64�

where both the interchain spacing and intrachain lattice pe-
riod are taken equal to unity, and therefore 0� �q1 ,q2���.
The minimal phonon frequency in this translationally invari-
ant system is zero, ��0,0�=0, while the cutoff phonon fre-
quency is ��� ,��=2�1+C �which is equal to ��� ,��
=2.0976�2.1 for C=0.1�.

Since we will be interested in the short-wavelength exci-
tations, with q1��, the corresponding phonon frequency for
C�1,

��q1 � �,q2� = 2 + C sin2�1

2
q2� , �65�

determines the phonon group velocity across the chains:

V��q1 � �,q2� =
���q1 � �,q2�

�q2
=

1

2
C sin�q2� . �66�

Now we turn to the nonlinear dynamics of M weakly
coupled parallel nonlinear chains with Hamiltonian �60�. We
will integrate Eqs. �61� with the initial condition, which de-
scribes exact discrete breather in the mth chain �1�m�M�
under the condition of immovability of the rest of the chains,
to study the time dependence �for t�0� of the vibration en-
ergy in the chains:
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FIG. 11. Energy of a slowly moving wandering breather close to
the separatrix in chain 1 �a� and chain 2 �b� versus time and site.
The breather is initially excited in chain 1 with immovable chain 2,
with velocity V=0.1 and amplitude max=0.26. The separatrix so-
lution of Eq. �40� corresponds to max=0.2582. Separatrixlike dy-
namics, similar to the one shown in Fig. 7�b�, is well established for
t�4000.
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FIG. 12. Distribution of the breather energy in chain 1 �a� and
chain 2 �b� versus time in the self-trapped regime of slowly moving
breathers in two coupled chains with C=0.1, �=0, and �=1. The
breather was initially excited in chain 1 with immovable chain 2,
with velocity V=0.1 and amplitude max=0.3.
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Em =
1

2�
n=1

N

�u̇m,n
2 + Vm,n + Vm,n−1 + Um,n + Um−1,n� � �

n=1

N

En,m,

�67�

where Vm,n=V�um,n+1−um,n�, Um,n=U�um+1,n−um,n�, and
breather energy E=�m=1

M Em=�n=1
N �m=1

M En,m.
By measuring the time dependence of En,m, we can define

the breather center location �nc ,mc�,

nc = �
m=1

M

�
n=1

N

npn,m, mc = �
m=1

M

�
n=1

N

mpn,m, �68�

where pn,m=En,m /E describes the distribution of the normal-
ized breather energy in a 2D lattice. With these breather
quantities we can measure the longitudinal Dx �along the
chain axis� and transverse Dy breather diameters:

Dx = 2��
m=1

M

�
n=1

N

�n − nc�2pn,m�1/2

,

Dy = 2��
m=1

M

�
n=1

N

�m − mc�2pn,m�1/2

. �69�

In Figs. 13�a�–13�d� we show the time dependence of ener-
gies of the first, i=1, and the last, i=M, coupled chains for
M =2,3 ,4 ,5 for the time interval just after breather excita-
tion in the first chain, left panels, and for the later time, right
panels. In the case of M =2, there is a periodic and harmonic
complete energy exchange between the first and second
chains; see Fig. 13�a�. In the case of M =3, there is periodic
�and nonharmonic� recurrence of the complete energy accu-
mulation in the first chain and the period of such recovery is
twice larger �the recurrence rate is twice smaller� than that in
the case of M =2. For M =3, the time dependence of the first
chain energy recurrence can be roughly approximated as
cos4�Ct /8� �instead of cos2 �=cos2�Ct /4� for M =2, Eqs.
�19� and �45��, similar to the time dependence of the popu-
lation of the initially excited state in a three-state �spin-1�
atomic system; see, e.g., Ref. �57�. Here C /4 plays role of
the Rabi frequency, which is twice smaller than the rate of
the complete energy exchange �energy recurrence� in the
case of M =2, when it is equal to C /2; see Eq. �45�. In the
case of M =4 and M =5, the recurrence of energy of the first
and last chains becomes quasiperiodic �see Figs. 13�c� and
13�d��, but still the �approximate� period TM of such recur-
rence scales with the number of chains M as TM � �M −1�.
For M �6, C=0.1, the initially localized in chain-1 excita-
tion spreads its energy in the whole system of weakly
coupled chains.

The dependence of the recurrence period TM on M we can
relate with the transverse group velocity, Eq. �66�, of the
high-frequency phonons �with q1��� in the system of
weakly linearly coupled anharmonic chains. The transverse
wave vector q2 in Eq. �66� is equivalent to the relative phase
of the neighboring chains. In the regime of almost-harmonic
energy transfer between the neighboring chains, the relative
phase is always close to � /2; see Fig. 1. It means that the
transverse wave vector q2 in the expression �66� for the

transverse group velocity of the wandering breather should
also be �approximately� equal to � /2. In the case of the 2D
system of coupled oscillator chains, q2=� /2 corresponds to
the case when, say, only the odd chains are excited at a given
moment while their nearest neighbors, even chains, are at
rest. This gives V�� 1

2C for the transverse group velocity.
Importantly, this characteristic group velocity does not de-
pend on the number of the coupled chains, M. Therefore we
can estimate the period of the first chain energy recovery as
TM =2A�M −1� /V��4A�M −1� /C with some dimensionless
factor A, which is consistent with our numerical observation
�with A�3�.

The same transverse phonon group velocity one can esti-
mate from Fig. 14 as the speed of breather spreading across
the chains. Figure 14 shows the time dependence of energy
distribution among the chains when the breather is initially
excited in the edge chain, Figs. 14�a� and 14�b�, or in the
central chain, Figs. 14�c� and 14�d�, in the system of M
=50 coupled chains with N=50. As follows from Figs. 14�a�
and 14�c�, the initial breather energy spreads for 20 chains
for approximately 500 time units. This gives us a quantitative
estimate of 0.04 for the transverse group velocity, which is
rather close to our analytical estimate with the use of Eq.
�66� for q2�� /2: V�� 1

2C=0.05. Figure 14 also shows that
the appearance of localized breathers in a system of coupled
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FIG. 13. �Color online� Time dependence of the breather energy
in the first �green, light gray� and last �blue, dark gray� chains in a
system of two �a�, three �b�, four �c�, and five �d� chains with C
=0.1, �=0, and �=1. The breather is always initially excited with
frequency �=2.05 in chain 1, with immovable rest of the chains.
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chains, with M 
2, has a threshold in breather frequency,
�thresh=2.15 in Fig. 14�b� and �thresh=2.17 in Fig. 14�d�,
similar to the case of two coupled chains. The threshold
breather frequency, which corresponds to the appearance of
localized breathers in a system of coupled chains, we should
compare with the breather frequency at the separatrix in a
system of two coupled chains, �sep�2.1; see Eq. �48� for
C=0.1, �=0, and k=0 and Figs. 7�b� and 7�c�. Since all of
the above frequencies are close, we can get an estimate for
the threshold breather amplitude for its localization in the 2D
system of weakly coupled chains: max

thresh��C /�. For
max�max

thresh, the 1D breather, which was initially excited
in one chain, will start to translate laterally to the neighbor-
ing chains, will spread its energy among them and lose it due
to phonon emission, and finally will decay into small-
amplitude phonons due to a lowering of its frequency up to
the cutoff phonon frequency �max=2�1+C; see Figs. 14�a�
and 14�c�. Such an evolution of low-amplitude 1D breathers
can also be related to the above-mentioned conclusion that
the wandering breather is not an exact solution of the non-
linear system even in the case of two coupled anharmonic
chains. In contrast to such behavior of low-amplitude breath-
ers, the 1D breather with amplitude max�max

thresh is self-
trapped and remains localized mainly in the chain of its ini-
tial excitation; see Figs. 14�b� and 14�d�. �In Fig. 14�d� one
can also see a partial �incomplete� energy exchange between
the central chain and its nearest neighboring chains, similar
to the incomplete energy exchange in two coupled chains
beyond the separatrix; cf. Figs. 7�d�.� This phenomenon re-
sembles the so-called delocalizing transition in 2D systems,
when the wave field abruptly changes its character from spa-
tially localized to the extended one; cf. the similar delocal-

izing transition for polarons in 2D and 3D lattices �36� and
for Bose-Einstein condensates in 2D optical lattices �37�. In
our case, the delocalizing transition occurs by a decrease of
the initial breather amplitude max �or frequency �� from the
value max�max

thresh��C /� �or ���thresh� to the value
max�max

thresh �or ���thresh�. Such a transition is related to
the finite energy threshold for the creation of solitons and
breathers in 2D and 3D systems �see Refs. �58,59�� and is
absent in 1D ��-FPU or discrete nonlinear Schrödinger equa-
tion �36,37�� systems. Indeed, the threshold breather ampli-
tude max

thresh in strongly anisotropic quasi-1D systems van-
ishes in the limit C→0 of a single 1D chain since max

thresh

��C /�. A similar threshold breather amplitude max
thresh

��C /� for breather delocalization should also appear in 3D
arrays of parallel weakly coupled nonlinear chains, with cou-
pling constant C�1, which are described by the FPU Hamil-
tonian, similar to the one given by Eq. �1�.

To get deeper insight into the delocalizing transition of the
discrete breather in 2D systems of weakly coupled chains,
we confirm numerically that the discrete breather in 2D sys-
tems of weakly coupled chains is stable only in the fre-
quency range ��b ,��, where �b=2.12 for C=0.1 is higher
than the cutoff phonon frequency ��� ,��=2�1+C�2.1.
This means that there is a frequency gap ���� ,�� ,�b� above
the cutoff phonon frequency in which there are no solutions
for localized breathers in 2D systems: breathers with fre-
quencies in the gap spread across all 2D lattices. The fre-
quency �b is close to the threshold frequencies �thresh afore-
mentioned and indicated in Fig. 14, but the frequency �b
does not depend on the breather excitation in 2D lattices, in
contrast to the threshold frequencies. In Fig. 15 we plot the
breather energy distributions along and across the chains for
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FIG. 14. Time dependence of the breather energy distribution between chains in a system of 50 coupled chains with C=0.1, �=0, and
�=1. Here m is the chain number and Em is energy of the mth chain. The breather was initially excited with frequency �=2.14 in chain 1
�a�, with frequency �=2.15 in chain 1 �b�, with frequency �=2.16 in chain 25 �c�, and with frequency �=2.17 in chain 25 �d�, with
immovable rest of chains.
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the one-chain, Fig. 15�a�, and antisymmetric �antiphase� two-
chain, Fig. 15�b�, breathers in a 2D lattice with �=�b
=2.12, which show that the transverse localization length of
the discrete breather has the order of the interchain spacing
for �=�b �and further decreases for ���b; see Fig. 16�b�
below�.

In addition to the one- and two-chain breathers, there are
also three-chain, four-chain, etc., in-phase and antiphase
breathers in a multichain system. In Fig. 16 we show the
breather vibrational energy and the measured �with the use of
Eqs. �67�–�69�� longitudinal and transverse breather diam-
eters for the one-, two-, three-, and four-chain antiphase
breathers. As one can see from this figure, the breather en-
ergy grows as �4 in the high-energy limit. This dependence
can easily be understood from Eqs. �16� and �22� for breather
energy Eb and frequency �: one has Eb�max

4 and �
�max in the large-amplitude limit; see also Ref. �22�. The
breather with threshold frequency �=�b has minimal en-
ergy: Eb=0.517 and Eb=0.740 for the one- and antiphase
two-chain breathers, respectively. From Fig. 16�b� we can
also see that, in accordance with Fig. 15�a�, the transverse
localization length of the one-chain breather at the threshold
frequency is very close to the interchain spacing and further
decreases with the increase of breather energy. �Both longi-
tudinal and transverse breather diameters saturate at the
amplitude-independent values in the high-energy limit �see,
e.g., �7��, when the transverse diameter of the m-chain
breather is simply Dy �B�m+1� with B�1; see Fig. 16�b�.�

This means that there are no laterally localized envelope-
soliton vibrational excitations in our 2D system of parallel-
coupled nonlinear oscillator chains, in contrast to the later-
ally localized envelope-soliton optical excitations in 2D
arrays of parallel-coupled nonlinear optical waveguides �11�.
Therefore the interchain breather translation and wandering
are possible only in a system of small number of coupled
oscillator chains �M �5 for C=0.1�, while in a multichain
2D system �M �6 for C=0.1� the vibrational breathers can
move only along the chains. Such 1D motion of 1D breathers
in a 2D system of multiple parallel weakly coupled oscillator
chains resembles the 1D motion of 1D interacting Bose gases
in a 2D array of multiple parallel weakly coupled atom
waveguides �a quantum Newton’s cradle� �28� �see also
�60��.

IV. SUMMARY

In summary, we have found, both analytically and nu-
merically, two qualitatively different regimes of energy ex-
change between phase-coherent breathers �intrinsically local-
ized short-wave nonlinear excitations� in two weakly
coupled nonlinear oscillator chains. In the low-amplitude
mode, the breather performs periodic transverse translations
�wandering� between the coupled chains. In the large-
amplitude mode, the breather is self-trapped in one chain.
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FIG. 15. Distribution of the vibration energy in a 2D lattice of
weakly coupled nonlinear chains, with �=0, �=1, and C=0.1,
along �n� and across �m� the chains for a one-chain �a� and an-
tiphase two-chain �b� breather with frequency �=2.12.
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FIG. 16. �Color online� Dependence of the breather vibrational
energy �a� and longitudinal Dx and transverse Dy breather diameters
�b� versus breather frequency for one-chain �curves 1, 5, and 6�,
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These two breather modes are detached by a separatrix, at
which the rate of the interchain energy exchange vanishes.
These two regimes have a profound analogy—and are de-
scribed by a similar pair of equations—to the Josephson
plasma oscillations and nonlinear self-trapping, recently ob-
served in a single-bosonic Josephson junction �31�. The pre-
dicted evolution of the relative phase of two weakly coupled
coherent breathers in both regimes is also analogous to the
evolution of relative quantum-mechanical phase between
two weakly coupled macroscopic Bose-Einstein condensates,
which was directly measured in a single-bosonic Josephson
junction by means of interference �31�. On the basis of this
profound analogy, we predict a tunneling regime of two
weakly linked Bose-Einstein condensates in which their rela-
tive phase oscillates around �

2 mod �, which can be observed
by means of interference. The similarity between the classi-
cal phase-coherent excitation exchange and macroscopic tun-
neling quantum dynamics found here can encourage new ex-
periments in both fields.

We also show that the magnitude of the static displace-
ments of the coupled chains with nonlinear localized excita-
tion, induced by cubic term in the intrachain anharmonic
potential, scales approximately as the total vibrational energy
of the excitation, either one- or two-chain one, and does not
depend on the interchain coupling. This feature is also valid
for a narrow stripe of several parallel-coupled nonlinear
chains. We also study two-chain breathers, which can be con-
sidered as bound states of discrete breathers with different
symmetry and center locations in the coupled chains, and
bifurcation of the antiphase two-chain breather into the one-
chain one. Bound states of two breathers with different com-
mensurate frequencies are found in the two-chain system.

Merging of two breathers with different frequencies in one
breather in two coupled chains is observed. Wandering of the
low-amplitude breather in a system of several, up to five,
coupled nonlinear chains is studied, and the dependence of
the wandering period on the number of chains is analytically
estimated and compared with numerical results.

Delocalizing transition of a 1D breather in a 2D system of
a large number of parallel-coupled nonlinear chains is de-
scribed, in which the breather, initially excited in a given
chain, abruptly spreads its vibrational energy in the whole
2D system upon decreasing breather frequency or amplitude
below the threshold one. The threshold breather frequency is
above the cutoff phonon frequency in the 2D system, the
threshold breather amplitude scales as the square root of the
interchain coupling constant, and the breather vibrational en-
ergy is localized mainly in one chain at the delocalization
threshold. A similar delocalizing transition for 1D breathers
should also occur in 3D arrays of parallel-coupled nonlinear
oscillator chains. The delocalizing transition of discrete vi-
brational breathers in 2D and 3D systems of coupled nonlin-
ear oscillator chains has an analogy with the delocalizing
transition for Bose-Einstein condensates in 2D and 3D opti-
cal lattices.
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